Master mention informatique - Master 2 - Informatique - Statistique et informatique pour la science des donnees -SISE
Université Lyon 2 Lumière
Non finançable CPF
Tout public
Présentiel
Master mention informatique - Master 2 - Informatique - Statistique et informatique pour la science des donnees -SISE
Université Lyon 2 Lumière
Salarié en poste
Demandeur d'emploi
Entreprise
Étudiant
En présentiel
Nous contacter
Nous contacter
Niveau > BAC + 5
Public admis
Salarié en poste
Demandeur d'emploi
Entreprise
Étudiant
Prix
Nous contacter
Durée
Nous contacter
Niveau visé
Niveau > BAC + 5
Localité
En présentiel
Découvrez les localités disponibles pour suivre cette formation en présentiel.
En présentiel
Découvrez les localités disponibles pour suivre cette formation en présentiel.
Objectifs
Le Master 2 Statistique et Informatique pour la Science des donnéEs (SISE), du parcours Statistique et Informatique, propose une formation avancée à la data science, avec une forte composante machine learning et statistique d'une part, informatique et technologies big data d'autre part.
La complémentarité de ces compétences constitue le socle de la science des données (data science) et de la valorisation des données massives (big data, big data analytics). Les étudiants peuvent se tourner vers les métiers traditionnels de la data science et de la statistique (data scientist, data analyst, ingénieur machine learning, chargés d'études statistiques, consultant data mining, consultant data science, ingénieur score, ...). Ils peuvent également, de par leurs compétences approfondies en informatique en programmation (R et Python), en technologies big data et leurs applications (ex. hadoop, spark, dataviz, ...), en business intelligence et bases de données (conception et exploitation des entrepôts de données, outils ETL, bases de données NoSql, dataviz, …) valoriser un profil de data scientist / data analyst dans le sens d'une synergie réelle entre la statistique / machine learning et l'informatique.
Le savoir-faire acquis dans les modules consacrés aux spécialisations et applications (text mining, web mining, analyse des réseaux sociaux, valorisation des données de sécurité) leur permet d'être directement opérationnels dans des environnements exigeants. Ils le sont d'autant plus que près de 40% des enseignants du Master SISE sont assurés par des professionnels. Les étudiants sont ainsi au fait des pratiques et préoccupations récentes des entreprises. Ils sont en prise directe avec les évolutions technologiques particulièrement rapides dans le domaine de la data science.
Le Master SISE peut accueillir, au titre de la formation continue, des professionnels en reconversion, qui ont déjà travaillé plusieurs années en entreprises et qui souhaitent s'investir dans la data science. Ils peuvent suivre la formation à titre personnel, ou en accord avec leur entreprise, ou dans le cadre d'un congé individuel de formation, ou disposer de tout autre cadre de financement. Les candidats concernés doivent être pleinement disponibles et suivent les mêmes cours que les étudiants en formation initiale.
Les étudiants de notre Master de Science des Données participent au programme académique de DataCamp (DataCamp for the Classroom). Ils y ont accès gratuitement au titre du Master SISE. Ce programme s'étale sur un semestre, il leur permet d'approfondir leurs connaissances en R, Python, statistique, data mining et machine learning, data visualisation (Dataviz) (la liste des enseignements est visible sur le site). Le programme DataCamp aboutit à une certification en Data Science.
La complémentarité de ces compétences constitue le socle de la science des données (data science) et de la valorisation des données massives (big data, big data analytics). Les étudiants peuvent se tourner vers les métiers traditionnels de la data science et de la statistique (data scientist, data analyst, ingénieur machine learning, chargés d'études statistiques, consultant data mining, consultant data science, ingénieur score, ...). Ils peuvent également, de par leurs compétences approfondies en informatique en programmation (R et Python), en technologies big data et leurs applications (ex. hadoop, spark, dataviz, ...), en business intelligence et bases de données (conception et exploitation des entrepôts de données, outils ETL, bases de données NoSql, dataviz, …) valoriser un profil de data scientist / data analyst dans le sens d'une synergie réelle entre la statistique / machine learning et l'informatique.
Le savoir-faire acquis dans les modules consacrés aux spécialisations et applications (text mining, web mining, analyse des réseaux sociaux, valorisation des données de sécurité) leur permet d'être directement opérationnels dans des environnements exigeants. Ils le sont d'autant plus que près de 40% des enseignants du Master SISE sont assurés par des professionnels. Les étudiants sont ainsi au fait des pratiques et préoccupations récentes des entreprises. Ils sont en prise directe avec les évolutions technologiques particulièrement rapides dans le domaine de la data science.
Le Master SISE peut accueillir, au titre de la formation continue, des professionnels en reconversion, qui ont déjà travaillé plusieurs années en entreprises et qui souhaitent s'investir dans la data science. Ils peuvent suivre la formation à titre personnel, ou en accord avec leur entreprise, ou dans le cadre d'un congé individuel de formation, ou disposer de tout autre cadre de financement. Les candidats concernés doivent être pleinement disponibles et suivent les mêmes cours que les étudiants en formation initiale.
Les étudiants de notre Master de Science des Données participent au programme académique de DataCamp (DataCamp for the Classroom). Ils y ont accès gratuitement au titre du Master SISE. Ce programme s'étale sur un semestre, il leur permet d'approfondir leurs connaissances en R, Python, statistique, data mining et machine learning, data visualisation (Dataviz) (la liste des enseignements est visible sur le site). Le programme DataCamp aboutit à une certification en Data Science.
Programme
Le programme du Master SISE est articulé autour des enseignements fondamentaux, des applications et de la professionnalisation.
Les enseignements fondamentaux concernent la maîtrise des méthodes de statistique au sens large, incluant les techniques de modélisation de machine learning et de data mining. L'objectif est que l'apprenant doit comprendre les principes sous-jacents à ces méthodes, leurs mécanismes internes, leur champ d'application. Ils (les enseignements fondamentaux) concernent également l'informatique, qui va largement plus loin que la manipulation des outils. Les étudiants doivent acquérir des compétences fortes dans le développement d'applications de machine learning (développement et déploiement de librairies de calcul, d'applications avec un front-end web, etc.) ; de conception et de gestion des bases de données conventionnelles ou non (NoSQL, lac de données), locales ou dans le cloud ; de manipulation et d'intégration de technologies big data (hadoop, spark, …).
Les applications concernent la mise en œuvre des techniques statistiques et de machine learning dans des contextes et sur des données de nature particulière. Il s'agit notamment du traitement des données non-structurées qui sont pléthores aujourd'hui avec le web, mais aussi des images, des informations en provenance des réseaux sociaux collectées à l'aide d'API spécialisées, des données produits par les outils de la sécurité informatique (fichiers logs, …). Au-delà de la simple déclinaison des méthodes statistiques dans ces domaines, ils permettent de développer des approches et des compétences spécifiques valorisables sur le marché du travail.
La professionnalisation enfin concerne en particulier la mise en situation des étudiants dans le monde professionnel. Ils doivent gérer notamment les manifestations promotionnelles de nos formations durant la partie académique de l'année, entres autres : le forum qui consiste à faire venir les entreprises au contact de nos étudiants ; les journées thématiques (Securiday, Dataday, BI-Day, …) où des professionnels viennent partager leur expérience, avec l'organisation de challenges et d'ateliers sponsorisés, … Les étudiants acquièrent une expérience forte en travaillant dans des situations réelles, avec tous les écueils que cela peut représenter (un intervenant qui se désiste à la dernière minute par ex.).
Stage obligatoire, entre 4 et 6 mois, de la mi-mars jusqu'à fin septembre.
Les enseignements fondamentaux concernent la maîtrise des méthodes de statistique au sens large, incluant les techniques de modélisation de machine learning et de data mining. L'objectif est que l'apprenant doit comprendre les principes sous-jacents à ces méthodes, leurs mécanismes internes, leur champ d'application. Ils (les enseignements fondamentaux) concernent également l'informatique, qui va largement plus loin que la manipulation des outils. Les étudiants doivent acquérir des compétences fortes dans le développement d'applications de machine learning (développement et déploiement de librairies de calcul, d'applications avec un front-end web, etc.) ; de conception et de gestion des bases de données conventionnelles ou non (NoSQL, lac de données), locales ou dans le cloud ; de manipulation et d'intégration de technologies big data (hadoop, spark, …).
Les applications concernent la mise en œuvre des techniques statistiques et de machine learning dans des contextes et sur des données de nature particulière. Il s'agit notamment du traitement des données non-structurées qui sont pléthores aujourd'hui avec le web, mais aussi des images, des informations en provenance des réseaux sociaux collectées à l'aide d'API spécialisées, des données produits par les outils de la sécurité informatique (fichiers logs, …). Au-delà de la simple déclinaison des méthodes statistiques dans ces domaines, ils permettent de développer des approches et des compétences spécifiques valorisables sur le marché du travail.
La professionnalisation enfin concerne en particulier la mise en situation des étudiants dans le monde professionnel. Ils doivent gérer notamment les manifestations promotionnelles de nos formations durant la partie académique de l'année, entres autres : le forum qui consiste à faire venir les entreprises au contact de nos étudiants ; les journées thématiques (Securiday, Dataday, BI-Day, …) où des professionnels viennent partager leur expérience, avec l'organisation de challenges et d'ateliers sponsorisés, … Les étudiants acquièrent une expérience forte en travaillant dans des situations réelles, avec tous les écueils que cela peut représenter (un intervenant qui se désiste à la dernière minute par ex.).
Stage obligatoire, entre 4 et 6 mois, de la mi-mars jusqu'à fin septembre.
Ces formations peuvent vous intéresser
Kubernetes avancé
À DISTANCE
Non finançable CPF
1590 €
À distance
Entreprise
Enix
Mastère 1 - Expert IT, cybersécurité réseau et système
STRASBOURG, NICE, REIMS ET 5 AUTRE(S) LOCALITÉ(S)
Non finançable CPF
6660 €
En alternance / En centre
Étudiant
IRIS
Mastère Product Manager
À DISTANCE
Finançable CPF
5990 €
À distance
Tout public
Avis du centre
.
STUDI
Malheureusement, vous ne pouvez pas contacter ce centre via Maformation.
Voici des formations similaires :
Technicien Support Informatique
PARIS 10E, LYON 9E
Non finançable CPF
Nous contacter
En alternance
Étudiant
IPI
Administrateur Système DevOps
LILLE
Finançable CPF
Nous contacter
À distance / En alternance / En entreprise
Salarié en poste / Demandeur d'emploi / Entreprise
Avis du centre
.
DevUniversity
Formation MS-500 Microsoft 365 Sécurité pour administrateurs
À DISTANCE
Non finançable CPF
2235 €
À distance
Entreprise
ACCESS IT
Les formations les plus recherchées
Formation Toulouse
Formation Paris
Formation Nantes
Formation Saint-Étienne
Formation Strasbourg
Formation Bordeaux
Formation Lille
Formation Rennes
Formation Montpellier
Formation Angers
Formation Informatique CPF
Formation Informatique en ligne
Formation Administrateur systeme CPF
Formation Administrateur systeme en ligne
Formation Technicien support informatique
Formation Consultant en informatique
Formation Technicien informatique
Formation Spark
Formation Programmation
Formation Technicien reseaux
Formation Administrateur reseau
Formation Developpeur informatique
Formation Intelligence artificielle
Formation Machine learning
Formation Technicien support informatique Nantes
Formation Technicien informatique Nantes
Formation Administrateur systeme Nantes
Formation Consultant en informatique Nantes
Formation Spark Nantes
Formation Developpeur informatique Nantes
Formation Programmation Nantes
Formation Technicien support informatique Toulouse
Formation Technicien informatique Toulouse
Formation Consultant en informatique Toulouse