Python - Calcul parallele
Data Value
Non finançable CPF
Tout public
Présentiel
Public admis
Salarié en poste
Demandeur d'emploi
Entreprise
Etudiant
Prix
Nous contacter
Durée
Nous contacter
Localité
En présentiel
Découvrez les localités disponibles pour suivre cette formation en présentiel.
Objectifs
Développer des compétences avancées pour exploiter efficacement les architectures de calcul parallèle en Python, en maîtrisant les techniques de multithreading, multiprocessing, calcul distribué et traitement GPU afin d'optimiser les performances des applications et workflows de traitement de données.
Programme
- Etat de l'art de la discipline et concepts de base
- Les concepts de la programmation parallèle
- Le calcul sur GPU
Un GPU ne se programme pas comme un CPU.
- Calcul distribué
- Créer un pipeline de traitement de données
- Tour d'horizon des autres librairies Python pour le calcul parallèle
- Historique des supercalculateurs
- Comprendre les différentes architectures disponibles pour le calcul parallèle (CPU, GPU, TPU, ASIC, FPGA, NUMA... )
- Tout n'est pas parallélisable : comprendre les limites de la programmation parallèle
- Présentation du paysage de calcul parallèle avec Python
- Les concepts de la programmation parallèle
- Comprendre la terminologie: programmation asynchrone, concurrente, distribuée, multithreading, multiprocessing, ...
- Multithreading : paralléliser le code de votre programme - mise en oeuvre des concepts de base
- Comprendre les limites du multithreading en Python
- Multiprocessing : paralléliser votre programme sur plusieurs processeurs et mécanismes de synchronisation (verrous, sémaphores, barrières, pools de process...)
- Le calcul sur GPU
Un GPU ne se programme pas comme un CPU.
- Comprendre les architectures GPU : kernels, mémoire, threads, ...
- Travailler avec des cartes graphiques externes (eGPU)
- Mise en œuvre des principales librairies Python pour GPU: Cupy, PyCUDA, Numba et RapidsAI
- Calcul distribué
- Les principales librairies : Celery, Dask et PySpark
- Déployer et superviser un cluster de calcul parallèle avec chacune des librairies
- Exécuter des calculs sur un cluster
- Créer un pipeline de traitement de données
- Présentation des librairies Luigi et Airflow
- Concevoir et superviser son workflow
- Tour d'horizon des autres librairies Python pour le calcul parallèle
- La compilation Just In Time avec Numba
- Greenlets : vers un meilleur multithreading
- MPI4Py : Message Passing Interface
- Pythran : Le transpileur qui convertit votre code Python en C++
Envie d’en savoir plus sur cette formation ?
Documentez-vous sur la formation
Ces formations peuvent vous intéresser
Les formations les plus recherchées
Lyon
Toulouse
Marseille
Montpellier
Paris
Bordeaux
Dijon
Mâcon
Nantes
Rennes
Informatique CPF
Informatique en Ligne
Python
Python CPF
Python en Ligne
Technicien informatique
Technicien support informatique
Administrateur systeme
Consultant en informatique
Spark
Programmation
Technicien reseaux
Administrateur reseau
Hadoop
Intelligence artificielle
Python Clermont-Ferrand
Python Grenoble
Python Saint-Étienne
Python Annecy
Python Chambéry
Python Roanne
Python Aurillac
Python Le Pontet
Python Moirans
Python Annemasse