Analyse de survie avancee

Data Value

Non finançable CPF
Tout public
Présentiel
Public admis
Salarié en poste
Demandeur d'emploi
Entreprise
Etudiant
Prix
2340 €
Durée
Nous contacter
Localité
En présentiel
Découvrez les localités disponibles pour suivre cette formation en présentiel.
En savoir plus sur les localités en présentiel
Cette formation est disponible dans les centres de formation suivants:
  • 75 - Paris 8e
Cette formation peut être dispensée dans votre entreprise dans les localités suivantes :
  • 75 - Paris
  • 77 - Seine-et-Marne
  • 78 - Yvelines
  • 91 - Essonne
  • 92 - Hauts-de-Seine
  • 93 - Seine-Saint-Denis
  • 94 - Val-de-Marne
  • 95 - Val-d'Oise
Objectifs
Objectifs
S'approprier les principaux modèles de survie à effets aléatoires pour analyser des données de survie non standards. Savoir manipuler, analyser et interpréter des données de survie avancées.

Compétences visées
- Analyser l'utilisation des modèles de survie à effets aléatoires dans des contextes de données corrélées, et spécifier les hypothèses et paramètres associés.
- Maîtriser les spécificités et les techniques d'estimation du modèle à fragilité, en interprétant les paramètres et en évaluant l'adéquation du modèle.
- Évaluer l'intérêt et l'application des modèles pour risques compétitifs, en utilisant des modèles de régression appropriés et les outils de programmation (packages R).
- Développer et estimer des modèles conjoints pour données de survie, en spécifiant les hypothèses et en interprétant les paramètres du modèle.
Programme
- Modèles de survie à effets aléatoires (frailty models)
Contexte des données corrélées
Terminologie
Exemples
Spécification du modèle à fragilité
Hypothèses
Interprétation des paramètres du modèle
Estimation des paramètres du modèle
Tests d'hypothèses sur les paramètres du modèle
Codage des variables explicatives (binaire, qualitative)
Modification de l'effet et confusion
Comparaison de modèles et sélection de variables
Étude de l'adéquation du modèle (résidus)

- Modèles pour risques compétitifs
Contexte et indicateurs pour risques semi-compétitifs ou compétitifs
Modèles de régression pour risques compétitifs
Packages R

- Modèles conjoints pour données de survie
Contexte
Spe?cification des mode?les conjoints
Hypothe?ses
Interpre?tation des parame?tres du mode?le

Envie d’en savoir plus sur cette formation ?

Documentez-vous sur la formation

Ces formations peuvent vous intéresser

Quelle est votre situation ?

Vous êtes ?

Veuillez choisir un lieu

Please fill out this field.

Please fill out this field.

Veuillez sélectionner un niveau de formation

Informez-vous gratuitement et sans engagement sur la formation.

Please fill out this field.

Please fill out this field.

Please fill out this field.

Veuillez saisir une adresse email

  • Vous voulez dire ?
  • ou plutôt ?

En cliquant sur "J'envoie ma demande", vous acceptez les CGU et déclarez avoir pris connaissance de la politique de protection des données du site maformation.fr

Haut de page