Python pour la Data Science

Data Value

Non finançable CPF
Tout public
En ligne
Présentiel
Public admis
Salarié en poste
Demandeur d'emploi
Entreprise
Etudiant
Prix
Nous contacter
Durée
Nous contacter
Niveau visé
Non diplômante
Localité
En ligne
Vous pouvez suivre cette formation depuis chez vous ou depuis n’importe quel endroit à distance.
En présentiel
Découvrez les localités disponibles pour suivre cette formation en présentiel.
En savoir plus sur les localités en présentiel
Cette formation est disponible dans les centres de formation suivants:
  • 31 - Labège
Cette formation peut être dispensée dans votre entreprise dans les localités suivantes :
  • 09 - Ariège
  • 11 - Aude
  • 12 - Aveyron
  • 30 - Gard
  • 31 - Haute-Garonne
  • 32 - Gers
  • 34 - Hérault
  • 46 - Lot
  • 48 - Lozère
  • 65 - Hautes-Pyrénées
  • 66 - Pyrénées-Orientales
  • 81 - Tarn
  • 82 - Tarn-et-Garonne
Objectifs
Apprendre à utiliser le langage Python et ses principales librairies scientifiques pour traiter, visualiser et modéliser les données en Data Science

Programme
- L'écosystème scientifique Python
  • Les incontournables: Numpy, Scipy, Pandas, Matplotlib et iPython qui sont le ciment de toutes les autres librairies scientifiques
  • Panorama des librairies et logiciels scientifiques par domaine
  • Les critères permettant de juger de la qualité d'une librairie
- Calculer avec des nombres réels: comprendre les erreurs de calculs
  • La représentation des nombres réels
  • Comprendre les erreurs de calculs et les contourner
- La scipy stack
  • Manipuler des tableaux de nombres: Numpy
    • Différences avec les listes Python
    • Création, sélection, filtres et principales fonctions
  • Visualiser ses données: Matplotlib
    • Les concepts de la librairie
    • Principaux graphiques: nuages de points, courbes, histogrammes, boxplot, ...
    • Fonctionnalités avancées: 3D, légendes, colorbar, manipuler les axes, annotations, ...
  • Analyse de données: Pandas
    • Les fondements de la librairie: Manipuler des données de type CSV et Excel
    • Séries et Dataframes
    • Index, sélection de données, filtres/recherche, agrégations, jointures et fonctions avancées
    • Manipuler des séries temporelles
  • Les fonctions mathématiques avancées: Scipy
    • Statistiques, optimisation, interpolations/régressions, traitement d'images
- Visualisation de données
  • Présentation de l'écosystème de visualisation de données de Python
  • Les librairies orientées Web: Bokeh, Altair et Plotly
  • Les "écosystèmes" PyViz et HoloViz
  • La visualisation de données volumineuses/big data avec DataShader
  • Les statistiques avec Seaborn

- Visualiser des données géospatiales
  • Convertir ses données d'un système de coordonnées à l'autre
  • Cartographie interactive "à la Open Street Map/Google Maps" avec Folium/iPyleaflet
  • Cartographie statique avec Cartopy
  • Autres librairies géospatiales
- Manipulation de données volumineuses
  • Les librairies h5py, pytables, netcdf4, xarray, iris, parquet permettant de lire vos fichiers scientifiques
  • Paralléliser ses calculs avec Dask
  • Paralléliser ses calculs avec CuDF
  • Manipuler des dataframes gigantesques avec Dask
- Personnalisation
Sous réserve de contraintes techniques ou de confidentialité, nous vous pr

Envie d’en savoir plus sur cette formation ?

Documentez-vous sur la formation

Ces formations peuvent vous intéresser

Quelle est votre situation ?

Vous êtes ?

Veuillez choisir un lieu

Please fill out this field.

Please fill out this field.

Veuillez sélectionner un niveau de formation

Informez-vous gratuitement et sans engagement sur la formation.

Please fill out this field.

Please fill out this field.

Please fill out this field.

Veuillez saisir une adresse email

  • Vous voulez dire ?
  • ou plutôt ?

En cliquant sur "J'envoie ma demande", vous acceptez les CGU et déclarez avoir pris connaissance de la politique de protection des données du site maformation.fr

Haut de page