Methodes PLS
Data Value
Non finançable CPF
Tout public
En ligne
Présentiel
Public admis
Salarié en poste
Demandeur d'emploi
Entreprise
Etudiant
Prix
Nous contacter
Durée
Nous contacter
Niveau visé
Non diplômante
Localité
En ligne
Vous pouvez suivre cette formation depuis chez vous ou depuis n’importe quel endroit à distance.
En présentiel
Découvrez les localités disponibles pour suivre cette formation en présentiel.
Objectifs
Extraire l'information utile et pertinente d'un ensemble de données pour lesquels les méthodes classiques sont inopérantes du fait d'un déséquilibre du fichier (plus de colonnes que de lignes, nombre important de données manquantes, redondance significative entre les variables exogènes).
Le but est l'exploration (évaluation de la structure de corrélation, présence de groupes, d'individus atypiques,...) et la modélisation (pouvoir prédire et anticiper le comportement d'un processus industriel ou transactionnel).
Le but est l'exploration (évaluation de la structure de corrélation, présence de groupes, d'individus atypiques,...) et la modélisation (pouvoir prédire et anticiper le comportement d'un processus industriel ou transactionnel).
Programme
- Méthode NIPALS (Non Iterative Partial Least Square)
- L'analyse en Composantes principales (A.C.P.)
- La régression PLS
- L'analyse Discriminante
- Présentation de la méthode NIPALS
- Particularités de cette méthode pour l'analyse des données
- Utilisation pour les différents outils de l'analyse des données selon les objectifs poursuivis
- Exploration
- Modélisation
- Prédiction
- L'analyse en Composantes principales (A.C.P.)
- Particularités de l'ACP mise en œuvre avec l'algorithme NIPALS
- Représentation géométrique
- Approche algébrique
- Mise en œuvre
- Analyse
- Utilisation des aides à l'interprétation
- Exemples d'utilisation traités
- La régression PLS
- Principes de la régression PLS avec l'algorithme NIPALS
- Avantages par rapport aux méthodes de régression classiques (gestion de la multicolinéarité, des valeurs manquantes, tableaux déséquilibrés avec plus de colonnes que de lignes,…)
- Régression PLS1
- Présentation de la PLS1
- Construction d'un modèle PLS1
- Les méthodes de validation internes ou croisées pour le choix du nombre de composantes
- Validation externe
- Les prévisions
- Présentation et utilisation des aides à l'interprétation
- Application sur divers exemples traités
- Régression PLS2
- Présentation de la PLS2
- Particularités de la PLS2
- Conditions d'utilisation
- Construction d'un modèle PLS2
- Les méthodes de validation internes ou croisées pour le choix du nombre de composantes
- Validation externe
- Les prévisions
- Présentation et utilisation des aides à l'interprétation
- Application sur divers exemples traités
- L'analyse Discriminante
- Types de données et objectifs poursuivis
- Exploration et identification de groupes
- Affectation de nouveaux individus : prédiction
- Méthode SIMCA (Soft Independent Modeling of Class Analogy)
- Utilisation de l'ACP NIPALS pour l'identification de groupes
- Règles de discrimination : le Cooman's plot
- Mode d'affectation de nouveaux individus ou groupe d'individus
- Exploration et identification de groupes
- Application sur divers exemples
- La régression PLSDA (Discriminant Analysis)
- Présentation et particularités de la PLSDA <
Envie d’en savoir plus sur cette formation ?
Documentez-vous sur la formation
Ces formations peuvent vous intéresser

Formation au métier de Data Analyst (Power BI, SQL, certification...
LILLE, GRENOBLE, MARSEILLE ET 11 AUTRE(S) LOCALITÉ(S)
Offre spéciale
Avis du centre
Les formations les plus recherchées
Lyon
Toulouse
Marseille
Montpellier
Paris
Bordeaux
Dijon
Mâcon
Nantes
Rennes
Audit CPF
Audit en Ligne
Analyste de donnees
Analyste de donnees CPF
Analyste de donnees en Ligne
Statisticien
Power bi
Qlikview
Data scientist
Big data
Business intelligence
Analyste de donnees Paris
Big data Paris
Business intelligence Paris
Data scientist Paris
Power bi Paris
Qlikview Paris
Statisticien Paris
Statisticien Paris 1er
Qlikview Évry-Courcouronnes
Power bi Évry-Courcouronnes