Pandas Avance
Data Value
Non finançable CPF
Tout public
En ligne
Présentiel
Public admis
Salarié en poste
Demandeur d'emploi
Entreprise
Étudiant
Prix
Nous contacter
Durée
Nous contacter
Localité
En ligne
Vous pouvez suivre cette formation depuis chez vous ou depuis n’importe quel endroit à distance.
En présentiel
Découvrez les localités disponibles pour suivre cette formation en présentiel.
Objectifs
Exploiter la librairie Pandas du langage Python pour traiter vos problématiques et projets en Data Science
Programme
- Tour d'horizon de la librairie Pandas
Vous utilisez Pandas pour vos analyses de données ou vos projets de Data Science, mais vous n'en maîtrisez pas tous les aspects ? Ce tour d'horizon vous permettra d'identifier toutes les possibilités qu'offre cette librairie. Par un exercice guidé, vous pourrez revoir les notions de bases pour l'utilisation de Pandas, des notions de visualisation de données avec Matplotlib, Pandas et Seaborn
- Maîtriser les subtilités des groupbys
Les groupbys peuvent vous permettre de mieux appréhender les modalités dans votre jeu de données.
- Tables pivots et tableaux croisés
Vous verrez par le biais de nombreux exemples et exercices, l‘intérêt des tables pivots et des tableaux croisés pour une représentation différente des jeux de données.
- Jointure de tables
Pour joindre des tables, il est possible de procéder par indice ou par colonne.
- Atelier de mise en pratique sur une journée
Toutes les notions vues précédemment seront mises en pratique lors d'une journée de travaux pratiques sur un problème d'analyse de données complet mettant en œuvre les bonnes pratiques à utiliser en Data Science.
- Accélération du calcul avec Pandas
Vous verrez quelles sont les librairies qui vous permettent de faire du multiprocessing avec Pandas
Vous utilisez Pandas pour vos analyses de données ou vos projets de Data Science, mais vous n'en maîtrisez pas tous les aspects ? Ce tour d'horizon vous permettra d'identifier toutes les possibilités qu'offre cette librairie. Par un exercice guidé, vous pourrez revoir les notions de bases pour l'utilisation de Pandas, des notions de visualisation de données avec Matplotlib, Pandas et Seaborn
- Rappels sur les notions de bases de Pandas
- Lecture de fichiers de données (csv, excel, SQL, parquet)
- Description du jeu de données et analyse statistique simple
- Implémenter des analyses et des visualisations différentes en fonction du type de données
- Gestion des données manquantes
- Manipulation de dates pour les Time Series
- Gestion des chaînes de caractères
- Mise en place des bonnes pratiques en Data Science
- Maîtriser les subtilités des groupbys
Les groupbys peuvent vous permettre de mieux appréhender les modalités dans votre jeu de données.
- Groupby à simple indice avec les fonctions d'agrégations classiques
- Personnalisation des fonctions d'agrégations
- Groupby à multiples indices
- Différence entre les fonctions apply et transform
- Rappels sur les fonctions anonymes
- Tables pivots et tableaux croisés
Vous verrez par le biais de nombreux exemples et exercices, l‘intérêt des tables pivots et des tableaux croisés pour une représentation différente des jeux de données.
- Fonctions d'agrégation et tables pivots
- Matrice de contingence
- Tableaux croisés
- Jointure de tables
Pour joindre des tables, il est possible de procéder par indice ou par colonne.
- Notions d'axes
- Concaténation
- Merge selon une ou plusieurs clés
- Jointure par rapport aux indices
- Atelier de mise en pratique sur une journée
Toutes les notions vues précédemment seront mises en pratique lors d'une journée de travaux pratiques sur un problème d'analyse de données complet mettant en œuvre les bonnes pratiques à utiliser en Data Science.
- Accélération du calcul avec Pandas
Vous verrez quelles sont les librairies qui vous permettent de faire du multiprocessing avec Pandas
- Boucler sur les lignes et les colonnes
- Revenir aux basiques avec NumPy
- Exemples avec la librairie Modin
- Exemples avec la librairie Numba
Ces formations peuvent vous intéresser
Python pour la data science
PARIS 12E
Non finançable CPF
1600 €
À distance / En centre / En entreprise
Salarié en poste / Entreprise
Stat4decision
DATA SCIENTIST | 4 mois | certifié par Formation Continue Panthéon-Sorbonne
À DISTANCE
Non finançable CPF
1500 €
À distance
Tout public
DATAGONG
Bootcamp Data Analyst - formation certifiante RNCP
À DISTANCE
Finançable CPF
4500 €
À distance
Tout public
Avis du centre
.
DATAROCKSTARS
Malheureusement, vous ne pouvez pas contacter ce centre via Maformation.
Voici des formations similaires :
DATA SCIENTIST | Titre RNCP niveau 7 - Bac +5 | Co-certifiée école MINES Paris - PSL
À DISTANCE
Finançable CPF
7190 €
À distance / En entreprise
Salarié en poste / Demandeur d'emploi / Entreprise
Avis du centre
.
DATASCIENTEST
Data Analyst - Formation certifiante à Paris
PARIS 11E
Finançable CPF
6890 €
En centre
Tout public
Avis du centre
.
DataBird
Bachelor Product Owner Data
À DISTANCE
Finançable CPF
4990 €
À distance
Tout public
Avis du centre
.
STUDI
Les formations les plus recherchées
Formation Toulouse
Formation Nantes
Formation Paris
Formation Strasbourg
Formation Bordeaux
Formation Lille
Formation Rennes
Formation Montpellier
Formation Nice
Formation Angers
Formation Informatique CPF
Formation Informatique en ligne
Formation Data science CPF
Formation Data science en ligne
Formation Technicien support informatique
Formation Consultant en informatique
Formation Administrateur systeme
Formation Technicien informatique
Formation Spark
Formation Programmation
Formation Technicien reseaux
Formation Administrateur reseau
Formation Developpeur informatique
Formation Intelligence artificielle
Formation Technicien support informatique Nantes
Formation Technicien informatique Nantes
Formation Administrateur systeme Nantes
Formation Consultant en informatique Nantes
Formation Spark Nantes
Formation Developpeur informatique Nantes
Formation Programmation Nantes
Formation Technicien support informatique Toulouse
Formation Technicien informatique Toulouse
Formation Consultant en informatique Toulouse