Big Data recolte et analyse de donnees volumineuses module Machine Learning

Cegefos

Non finançable CPF
Tout public
En ligne
Public admis
Salarié en poste
Demandeur d'emploi
Entreprise
Etudiant
Prix
Nous contacter
Durée
Nous contacter
Niveau visé
Non diplômante
Localité
En ligne
Vous pouvez suivre cette formation depuis chez vous ou depuis n’importe quel endroit à distance.
En savoir plus sur les localités en présentiel
Objectifs
• Acquérir les bases du Machine Learning
• Apprendre à créer les modèles et les mettre en production
• Comprendre les possibilités du Machine Learning
• Formaliser son problème de Machine Learning
• Apprendre à Manipuler les données
• Apprendre à construire des modèles prédictifs
• Apprendre à utiliser ces modèles en production
• Apprendre à évaluer les performances
Programme
Jour 1
Faire de l'apprentissage automatique via des outils Open Source

Présentation du Machine Learning et de ses possibilités:
• Les fondamentaux
• Apprendre à formaliser les problématiques
• Exemple du Data Science en entreprise

Créer un premier Problème Prédictif:
• Techniques d'apprentissage(les plus proches voisins, modèles Linéaire, arbre de décision, …)
• Révision des bases de la programmation
• Apprentissage d'un modèle avec librairie Open Source

Préparation des données afin de les utiliser dans un système d'apprentissage:
• Présentation du feature Engineering et les limites
• Technique d'exploration de données
• Procédure de Prétraitement et de nettoyage

Jour 2
Apprendre à évaluer et déployer des modèles prédictifs

Apprendre à évaluer des modèles prédictifs :
• Création des jeux d'apprentissage, mise en place de leur validation et test.
• Tester la représentativité des données
• Mesure de performance des modèles prédictifs
• Apprendre à faire une matrice de confusion et de coût

Apprendre à Sélectionner les modèles
• Déterminer l'exactitude des prédictions avec les ensembles de modèles
• Apprendre à créer des arbres de décisions

Apprendre à déployer :
• Déterminer l'importance des APIs en production.
• Vue d'ensemble des solutions Open Source
• Apprendre à créer des APIs
• Apprendre à Gérer l'authentification
• Savoir utiliser Amazon Machine Learning et BigML

Utilisation du ML sur du texte:
• Conseils de prétraitement des données textuelles
• Mise en pratique avec la librairie open source NLTK

Jour 3
Aller plus loin avec le Machine Learning

Techniques avancées:
• Principe du Gradient Boosting et utilisation de la librairie open source XGBoost
• Pipelines de Machine learning: enrichissement et sélection de features, modélisation
• Techniques d'optimisation des paramètres de pipelines de Machine learning: grid search, random search et utilisation de la librairie open source hyperopt
• Autres problèmes d'apprentissage:
• Réseaux de neurones et Deep Learning:
• Développer son propre cas d'usage:

Envie d’en savoir plus sur cette formation ?

Documentez-vous sur la formation

Ces formations peuvent vous intéresser

Quelle est votre situation ?

Vous êtes ?

Veuillez choisir un lieu

Please fill out this field.

Please fill out this field.

Veuillez sélectionner un niveau de formation

Informez-vous gratuitement et sans engagement sur la formation.

Please fill out this field.

Please fill out this field.

Please fill out this field.

Veuillez saisir une adresse email

  • Vous voulez dire ?
  • ou plutôt ?

En cliquant sur "J'envoie ma demande", vous acceptez les CGU et déclarez avoir pris connaissance de la politique de protection des données du site maformation.fr

Haut de page